These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mixed-ligand hydroxocopper(II)/pyridazine clusters embedded into 3D framework lattices. Author: Degtyarenko AS, Handke M, Krämer KW, Liu SX, Decurtins S, Rusanov EB, Thompson LK, Krautscheid H, Domasevitch KV. Journal: Dalton Trans; 2014 Jun 14; 43(22):8530-42. PubMed ID: 24760210. Abstract: Rational combination of pyridazine, hydroxo and carboxylate bridging ligands led to the assembly of three types of mixed-ligand polynuclear Cu(II) clusters (A: [Cu2(μ-OH)(μ-pdz)(μ-COO)]; B: [Cu4(μ3-OH)2(μ-pdz)2]; C: [Cu5(μ-OH)2(μ-pdz)4(μ-COO)2(μ-H2O)2]) and their integration into 3D framework structures. Mixed-ligand complexes [Cu2(μ-OH){TMA}(L)(H2O)] (1), [Cu4(μ3-OH)2{ATC}2(L)2(H2O)2]·H2O (2) [Cu4(μ3-OH)2{TDC}3(L)2(H2O)2]·7H2O (3) (L = 1,3-bis(pyridazin-4-yl)adamantane; TMA(3-) = benzene-1,3,5-tricarboxylate, ATC(3-) = adamantane-1,3,5-tricarboxylate, TDC(2-) = 2,5-thiophenedicarboxylate) and [Cu5(μ-OH)2{X}4(L)2(H2O)2]·nH2O (X = benzene-1,3-dicarboxylate, BDC(2-), n = 5 (4) and 5-hydroxybenzene-1,3-dicarboxylate, HO-BDC(2-), n = 6 (5)) are prepared under hydrothermal conditions. Trigonal bridges TMA(3-) and ATC(3-) generate planar Cu(II)/carboxylate subtopologies further pillared into 3D frameworks (1: binodal 3,5-coordinated, doubly interpenetrated tcj-3,5-Ccc2; 2: binodal 3,8-coordinated tfz-d) by bitopic pyridazine ligands. Unprecedented triple bridges in 1 (cluster of type A) support short CuCu separations of 3.0746(6) Å. The framework in 3 is a primitive cubic net (pcu) with multiple bis-pyridazine and TDC(2-) links between the tetranuclear nodes of type . Compounds 4 and 5 adopt uninodal ten-coordinated framework topologies (bct) embedding unprecedented centrosymmetric open-chain pentanuclear clusters of type C with two kinds of multiple bridges, Cu(μ-OH)(μ-pdz)2Cu and Cu(μ-COO)(μ-H2O)Cu (CuCu distances are 3.175 and 3.324 Å, respectively). Magnetic coupling phenomena were detected for every type of cluster by susceptibility measurements of 1, 3 and 4. For binuclear clusters A in 1, the intracluster antiferromagnetic exchange interactions lead to a diamagnetic ground state (J = -17.5 cm(-1); g = 2.1). Strong antiferromagnetic coupling is relevant also for type B, which consequently results in a diamagnetic ground state (J1 = -110 cm(-1); J2 = -228 cm(-1), g = 2.07). For pentanuclear clusters of type C in 4, the exchange model is based on a strongly antiferromagnetically coupled central linear trinuclear Cu3 group (J1 = -125 cm(-1)) and two outer Cu centers weakly antiferromagnetically coupled to the terminal Cu ions of the triad (J2 = -12.5 cm(-1)).[Abstract] [Full Text] [Related] [New Search]