These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stance width changes how sensory feedback is used for multisegmental balance control. Author: Goodworth AD, Mellodge P, Peterka RJ. Journal: J Neurophysiol; 2014 Aug 01; 112(3):525-42. PubMed ID: 24760788. Abstract: A multilink sensorimotor integration model of frontal plane balance control was developed to determine how stance width influences the use of sensory feedback in healthy adults. Data used to estimate model parameters came from seven human participants who stood on a continuously rotating surface with three different stimulus amplitudes, with eyes open and closed, and at four different stance widths. Dependent variables included lower body (LB) and upper body (UB) sway quantified by frequency-response functions. Results showed that stance width had a major influence on how parameters varied across stimulus amplitude and between visual conditions. Active mechanisms dominated LB control. At narrower stances, with increasing stimulus amplitude, subjects used sensory reweighting to shift reliance from proprioceptive cues to vestibular and/or visual cues that oriented the LB more toward upright. When vision was available, subjects reduced reliance on proprioception and increased reliance on vision. At wider stances, LB control did not exhibit sensory reweighting. In the UB system, both active and passive mechanisms contributed and were dependent on stance width. UB control changed across stimulus amplitude most in wide stance (opposite of the pattern found in LB control). The strong influence of stance width on sensory integration and neural feedback control implies that rehabilitative therapies for balance disorders can target different aspects of balance control by using different stance widths. Rehabilitative strategies designed to assess or modify sensory reweighting will be most effective with the use of narrower stances, whereas wider stances present greater challenges to UB control.[Abstract] [Full Text] [Related] [New Search]