These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication of an ultrasensitive impedimetric buprenorphine hydrochloride biosensor from computational and experimental angles.
    Author: Gholivand MB, Jalalvand AR, Goicoechea HC, Skov T.
    Journal: Talanta; 2014 Jun; 124():27-35. PubMed ID: 24767442.
    Abstract:
    For the first time, an ultrasensitive impedimetric buprenorphine hydrochloride (BN) biosensor based on immobilization of bovine serum albumin (BSA) onto multi-walled carbon nanotubes (MWCNTs)/glassy carbon electrode (BSA/MWCNTs/GCE) has been developed using initial characterization by computational methods and complementing them by experimental observations. Computational results showed that the BSA hydrophobically binds to MWCNTs which is energetically favorable and leads to spontaneous formation of the stable BSA/MWCNTs nanobiocomposite (bioconjugate). Computational results also showed that the interaction of BN with BSA is mainly driven by hydrophobic interactions. The interactions of BSA with MWCNTs and BN with BSA were also monitored by fluorescence and UV-vis spectroscopic techniques, and their results were consistent with the computational results. Morphology and electrochemical properties of the fabricated composite electrodes were examined by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Besides complementing the computational studies, experimental results showed that the addition of MWCNTs to the surface of the GCE greatly facilitated the electron transfer reactions, and also showed that the presence of BSA inhibits the interfacial electron transfer in some extent due to the non-conductive properties of BSA. On the other hand, the presence of BN may form an electroactive complex with BSA which accelerates the interfacial electron transfer and leads to obvious Faradaic impedance changes. The Faradaic impedance responses were linearly related to BN concentration between 5.0 nM and 72.0 nM and a limit of detection (LOD, 3S(b)/b) of 1.5 nM was achieved. Finally, the proposed biosensor was successfully applied to determination of BN in urine samples of both healthy and addict volunteers. The results were satisfactory and comparable to those obtained by applying the reference method based on high performance liquid chromatography-ultraviolet detection (HPLC-UV). It is expected that the distinctive features of BSA/MWCNTs nanobiocomposite would make it potentially advantageous for a broad range of biosensing, and clinical applications.
    [Abstract] [Full Text] [Related] [New Search]