These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Validation of semi-automatic scoring of dicentric chromosomes after simulation of three different irradiation scenarios. Author: Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero JF, Beinke C, Deperas M, Gregoire E, Koivistoinen A, Lindholm C, Moquet J, Oestreicher U, Puig R, Rothkamm K, Sommer S, Thierens H, Vandersickel V, Vral A, Wojcik A. Journal: Health Phys; 2014 Jun; 106(6):764-71. PubMed ID: 24776911. Abstract: Large scale radiological emergencies require high throughput techniques of biological dosimetry for population triage in order to identify individuals indicated for medical treatment. The dicentric assay is the "gold standard" technique for the performance of biological dosimetry, but it is very time consuming and needs well trained scorers. To increase the throughput of blood samples, semi-automation of dicentric scoring was investigated in the framework of the MULTIBIODOSE EU FP7 project, and dose effect curves were established in six biodosimetry laboratories. To validate these dose effect curves, blood samples from 33 healthy donors (>10 donors/scenario) were irradiated in vitro with ⁶⁰Co gamma rays simulating three different exposure scenarios: acute whole body, partial body, and protracted exposure, with three different doses for each scenario. All the blood samples were irradiated at Ghent University, Belgium, and then shipped blind coded to the participating laboratories. The blood samples were set up by each lab using their own standard protocols, and metaphase slides were prepared to validate the calibration curves established by semi-automatic dicentric scoring. In order to achieve this, 300 metaphases per sample were captured, and the doses were estimated using the newly formed dose effect curves. After acute uniform exposure, all laboratories were able to distinguish between 0 Gy, 0.5 Gy, 2.0, and 4.0 Gy (p < 0.001), and, in most cases, the dose estimates were within a range of ± 0.5 Gy of the given dose. After protracted exposure, all laboratories were able to distinguish between 1.0 Gy, 2.0 Gy, and 4.0 Gy (p < 0.001), and here also a large number of the dose estimates were within ± 0.5 Gy of the irradiation dose. After simulated partial body exposure, all laboratories were able to distinguish between 2.0 Gy, 4.0 Gy, and 6.0 Gy (p < 0.001). Overdispersion of the dicentric distribution enabled the detection of the partial body samples; however, this result was clearly dose-dependent. For partial body exposures, only a few dose estimates were in the range of ± 0.5 Gy of the given dose, but an improvement could be achieved with higher cell numbers. The new method of semi-automation of the dicentric assay was introduced successfully in a network of six laboratories. It is therefore concluded that this method can be used as a high-throughput screening tool in a large-scale radiation accident.[Abstract] [Full Text] [Related] [New Search]