These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI).
    Author: Zhou Z, Jiang JQ.
    Journal: Chemosphere; 2015 Jan; 119 Suppl():S95-100. PubMed ID: 24780761.
    Abstract:
    The treatment of ciprofloxacin (CIP) and ibuprofen (IBU) in test solutions by ferrate(VI) was investigated in this study. A series of jar test was performed in bench-scale at pH 6-9 and ferrate(VI) dose of 1-5 mg L(-1). Results demonstrated that ferrate(VI) removed CIP from test solutions efficiently, with above 70% of reduction under study conditions. In contrary, the removal rates of IBU were very low, less than 25% in all conditions. Raising ferrate(VI) dose improved the treatment performance, while the influence of solution pH was not significant at pH 6-9 compared with that of ferrate(VI) dose. In addition, kinetic studies of ferrate(VI) with both compounds were carried out at pH 8 and pH 9 (20 °C). Ferrate(VI) had a much higher reactivity with CIP than IBU at pH 8 and pH 9, with CIP's apparent second-order rate constants of 113.7±6.3 M(-1) s(-1) and 64.1±1.0 M(-1) s(-1), respectively. The rate constants of ferrate(VI) with IBU were less than 0.2 M(-1) s(-1) at pH 8 and pH 9. Furthermore, seven oxidation products (OPs) were formed during CIP degradation by ferrate(VI). The attack on the piperazinyl ring of the CIP by ferrate(VI) appeared to lead to the cleavage or hydroxylation of the rings, and the attack on the quinolone moiety by ferrate(VI) might lead to the cleavage of the double bond at the six-member heterocyclic ring. No OPs of IBU were detected during ferrate(VI) oxidation due to very small part of IBU was degraded by ferrate(VI).
    [Abstract] [Full Text] [Related] [New Search]