These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of phosphorylated cyclic AMP response element-binding protein in melanin-concentrating hormone neurons and orexin neurons in male and female rats during ad-libitum feeding. Author: Fukushima A, Hagiwara H, Yoshioka N, Kimura F, Akema T, Funabashi T. Journal: Neuroreport; 2014 Jul 09; 25(10):766-70. PubMed ID: 24780894. Abstract: Using phosphorylated cyclic AMP response element-binding protein (pCREB) as a marker of neural activity, we previously suggested that orexin neurons and melanin-concentrating hormone (MCH) neurons play distinct roles in feeding behavior. In the present study, we examined the expression of pCREB during ad-libitum feeding; previously, only fasted animals were examined. MCH neurons, but not orexin neurons, expressed pCREB during spontaneous food intake. The induction of pCREB expression did not differ by sex, but attenuation seemed to occur faster in females than in males. On the basis of the results of the present study, we speculate that MCH neurons respond to nutrition-related feeding, but the feeding-related activity of orexin was not evident unless hunger was accompanied by stress, such as the stress caused by the absence of food in the case of fasting. Therefore, the desire to eat under normal conditions does not drive orexin neurons, but it does drive MCH neurons. We tested this hypothesis by examining the effects of consuming glucose or saccharin, a nonmetabolized sweetener, in fasted male and female rats. Glucose and saccharin were equally effective in reducing pCREB expression in the orexin neurons of female rats. In MCH neurons, glucose attenuated the expression of pCREB, but saccharin had no effect, irrespective of sex. Taken together, the results indicate that MCH and orexin peptides play physiologically distinct roles in feeding behavior.[Abstract] [Full Text] [Related] [New Search]