These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The gull (Chroicocephalus brunnicephalus) as an environmental bioindicator and reservoir for antibiotic resistance on the coastlines of the Bay of Bengal.
    Author: Hasan B, Melhus Å, Sandegren L, Alam M, Olsen B.
    Journal: Microb Drug Resist; 2014 Oct; 20(5):466-71. PubMed ID: 24786256.
    Abstract:
    The presence and frequency of multiresistant bacteria in wild birds act as indicators of the environmental contamination of antibiotic resistance. To explore the rate of contamination mediated by Escherichia coli, 150 fecal samples from the brown-headed gull (Chroicocephalus brunnicephalus) and 8 water samples from the Bay of Bengal area were collected, cultured, and tested for antibiotic susceptibility. Special attention was paid to extended-spectrum beta-lactamase (ESBL)-producing isolates, which were further characterized genetically. Antibiotic resistance was found in 42.3% (36/85) of the E. coli isolates and multidrug resistance in 11.8%. Isolates from the area with a higher human activity were more resistant than those from an area with a lower level of activity. Most frequent was resistance to ampicillin (29.4%), followed by trimethoprim-sulfamethoxazole (24.7%) and quinolones (22.4%). Carriage of ESBL-producing E. coli was relatively high (17.3%) in the gulls, whereas no ESBL producers were found in the water. All ESBL-producing E. coli isolates, but one, carried bla(CTX-M-15) or bla(CTX-M-15)-like genes. A bla(CTX-M-14)-like enzyme was found as an exception. Gulls from two different colonies shared E. coli clones and harbored the clinically relevant sequence types ST10, ST48, and ST131. The high frequency of antibiotic resistance and ESBL production among E. coli isolates from gulls indicates that the environmental contamination of antibiotic resistance has already gone far on the coastlines of the Bay of Bengal. Considering the limited control over the antibiotic consumption and waste from human activities in Bangladesh, there is no easy solution in sight.
    [Abstract] [Full Text] [Related] [New Search]