These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation.
    Author: Whittle BJ, Lopez-Belmonte J, Rees DD.
    Journal: Br J Pharmacol; 1989 Oct; 98(2):646-52. PubMed ID: 2479442.
    Abstract:
    1. The effects of the specific inhibitor of nitric oxide (NO) formation, NG-monomethyl-L-arginine (L-NMMA), on resting systemic arterial blood pressure (BP) and on the actions of both endothelium-dependent and endothelium-independent vasodilators were investigated in the anaesthetized, normotensive rat. 2. Intravenous administration of L-NMMA (12.5-50 mg kg-1; 47-188 mumol kg-1) but not its enantiomer, D-NMMA, induced a dose-related increase in BP, which was reversed by the intravenous administration of L-arginine (150-600 mumol kg-1), but not D-arginine. 3. The vasodepressor responses to intravenous administration of the endothelium-dependent vasodilators, acetylcholine, bradykinin and substance P were significantly inhibited by L-NMMA (94 and 188 mumol kg-1 i.v.), but not by D-NMMA. 4. The inhibition by L-NMMA of these vasodepressor responses was reversed by administration of L-arginine, but not D-arginine. 5. Endothelin (ET-1) induced dose-related vasodepressor responses following bolus intravenous administration, which were significantly inhibited by L-NMMA but not by D-NMMA. This inhibition was reversed by administration of L-arginine. 6. The vasodepressor effects of the endothelium-independent vasodilators, glyceryl trinitrate or prostacyclin, were not significantly inhibited by L-NMMA. 7. These findings with L-NMMA suggest that resting blood pressure in the rat is modulated by endogenous NO biosynthesis and that endothelium-dependent vasodilators act through the formation of endogenous NO to exert their actions in vivo.
    [Abstract] [Full Text] [Related] [New Search]