These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities.
    Author: Hickey AL, Rowley CN.
    Journal: J Phys Chem A; 2014 May 22; 118(20):3678-87. PubMed ID: 24796376.
    Abstract:
    The calculation of molecular electric moments, polarizabilities, and electrostatic potentials is a widespread application of quantum chemistry. Although a range of wave function and density functional theory (DFT) methods have been applied in these calculations, combined with a variety of basis sets, there has not been a comprehensive evaluation of how accurate these methods are. To benchmark the accuracy of these methods, the dipole moments and polarizabilities of a set of 46 molecules were calculated using a broad set of quantum chemical methods and basis sets. Wave function methods Hartree-Fock (HF), second-order Møller-Plesset (MP2), and coupled cluster-singles and doubles (CCSD) were evaluated, along with the PBE, TPSS, TPSSh, PBE0, B3LYP, M06, and B2PLYP DFT functionals. The cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, aug-cc-pVTZ, and Sadlej cc-pVTZ basis sets were tested. The aug-cc-pVDZ, Sadlej cc-pVTZ, and aug-cc-pVTZ basis sets all yield results with comparable accuracy, with the aug-cc-pVTZ calculations being the most accurate. CCSD, MP2, or hybrid DFT methods using the aug-cc-pVTZ basis set are all able to predict dipole moments with RMSD errors in the 0.12-0.13 D range and polarizabilities with RMSD errors in the 0.30-0.38 Å(3) range. Calculations using Hartree-Fock theory systematically overestimated dipole moments and underestimate polarizabilities. The pure DFT functionals included in this study (PBE and TPSS) slightly underestimate dipole moments and overestimate polarizability. Polarization anisotropy and implications for charge fitting are discussed.
    [Abstract] [Full Text] [Related] [New Search]