These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Flow cytometry analyses of phagocytic and respiratory burst activities and cytochemical characterization of leucocytes isolated from wrasse (Labrus bergylta A.).
    Author: Haugland GT, Rønneseth A, Wergeland HI.
    Journal: Fish Shellfish Immunol; 2014 Jul; 39(1):51-60. PubMed ID: 24798992.
    Abstract:
    We have isolated leucocytes from peripheral blood (PBL), head kidney (HKL) and spleen (SL) of wrasse (Labrus bergylta A.) and studied the innate immune responses phagocytosis and respiratory burst using flow cytometry. Further, we have characterized the phenotypic properties of the leucocytes by cytochemical staining. We could differentiate between several subsets of leucocytes; lymphocytes, monocytes/macrophages, neutrophils, eosinophils, basophils and small leucocytes that might be precursor or immature cells. One striking observation was the eosinophils which were present among HKL, PBL and SL. The neutrophils had rounded, bean shaped or bi-lobed nuclei and resembled neutrophils in Atlantic cod (Gadus morhua L.) and lumpsucker (Cyclopterus lumpus L.), but were different from the polymorphonucleated neutrophils in Atlantic salmon (Salmo salar L.) and humans. Basophils were observed, but they were rare. Phagocytosis and respiratory burst activities were detected among different cell types. Highest phagocytic activity was observed among monocytes/macrophages and small leucocytes. Several different subtypes had ability to perform an oxygen-dependent degradation of microbes, measured as respiratory burst activity. Knowledge of the basic properties of wrasse's leucocytes and innate immunology can benefit further studies on its adaptive immune responses.
    [Abstract] [Full Text] [Related] [New Search]