These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators. Author: Malysz P, Sirouspour S. Journal: IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400. Abstract: A series of human factors experiments involving maneuvering and grasping tasks are carried out to evaluate the effectiveness of a novel asymmetric semiautonomous teleoperation (AST) control design framework for teleoperation of mobile twin-arm robotic manipulators. Simplified configurations are examined first to explore control strategies for different aspects of such teleoperation tasks. These include teleoperation of a nonholonomic mobile base, telemanipulation of a dual-arm robot, and dual-arm/dual-operator teleoperation task scenarios. In two sets of experiments with a planar nonholonomic mobile base, teleoperation via a 3DOF planar haptic interface with position mapping and force reflection of the nonholonomic constraint decreases task-completion-time (TCT) and reduces unwanted collisions. In dual-arm and dual-operator teleoperation maneuverability experiments, the assignment of decoupled and nonconflicting control frames reduces TCT and unwanted contacts. The use of so-called "soft" constraints via passive semiautonomous control reduces TCT and unwanted block drops in telegrasping experiments with a twin-arm manipulator. A final comprehensive experiment encompassing elements of the simplified configurations demonstrates the effectiveness of AST control framework in dual-operator teleoperation of a twin-arm mobile manipulator.[Abstract] [Full Text] [Related] [New Search]