These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Upper thermal limits of cardiac function for Arctic cod Boreogadus saida, a key food web fish species in the Arctic Ocean. Author: Drost HE, Carmack EC, Farrell AP. Journal: J Fish Biol; 2014 Jun; 84(6):1781-92. PubMed ID: 24814099. Abstract: The objective of this study was to determine the upper thermal limits of Arctic cod Boreogadus saida by measuring the response of maximum heart rate (f(Hmax)) to acute warming. One set of fish were tested in a field laboratory in Cambridge Bay (CB), Nunavut (north of the Arctic Circle), and a second set were tested after air transport to and 6 month temperature acclimation at the Vancouver Aquarium (VA) laboratory. In both sets of tests, with B. saida acclimated to 0° C, f(Hmax) increased during acute warming up to temperatures considerably higher than the acclimation temperature and the near-freezing Arctic temperatures in which they are routinely found. Indeed, f(Hmax) increased steadily between 0.5 and 5.5° C, with no significant difference between the CB and VA tests (P > 0.05) and with an overall mean ± s.e. Q10 of 2.4 ± 0.5. The first Arrhenius breakpoint temperature (T(AB)) for f(Hmax) was also statistically indistinguishable for the two sets of tests (mean ± s.e. 3.2 ± 0.3 and 3.6 ± 0.3° C), suggesting that the temperature optimum for B. saida could be reliably measured after live transport to a more southerly laboratory location. Continued warming above 5.5° C revealed a large variability among individuals in the upper thermal limits that triggered cardiac arrhythmia (T(arr)), ranging from 10.2 to 15.2° C with mean ± s.e. 12.4 ± 0.4° C (n = 11) for the field study. A difference did exist between the CB and VA breakpoint temperatures when the Q10 value decreased below 2 (the Q10 breakpoint temperature; T(QB)) at 8.0 and 5.5° C, respectively. These results suggest that factors, other than thermal tolerance and associated cardiac performance, may influence the realized distribution of B. saida within the Arctic Circle.[Abstract] [Full Text] [Related] [New Search]