These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Periodontal ligament stem cells modulate root resorption of human primary teeth via Runx2 regulating RANKL/OPG system. Author: Li B, Zhang Y, Wang Q, Dong Z, Shang L, Wu L, Wang X, Jin Y. Journal: Stem Cells Dev; 2014 Oct 15; 23(20):2524-34. PubMed ID: 24827498. Abstract: Physiological primary teeth exfoliation is a normal phenomenon during teeth development. However, retained primary teeth can often be observed in the patients with cleidocranial dysplasia (CCD) caused by mutation of Runx2. The potential regulative mechanism is still unknown. In the present study, periodontal ligament stem cells (PDLSCs) were derived from different resorbed stages of primary teeth and permanent teeth from normal patients and primary teeth from CCD patient. The proliferative, osteogenic and osteoclast-inductive capacities of PDLSCs from each group were detected. We demonstrated here that the proliferative ability of PDLSCs was reduced while the osteogenic and the osteoclast-inductive capacity of PDLSCs were enhanced during root resorption. The results also showed that PDLSCs from permanent teeth and CCD patient expressed low level of Runx2 and RANKL while high level of OPG. However, expression of Runx2 and RANKL were increased while expression of OPG was decreased in PDLSCs derived from resorbed teeth. Furthermore, Runx2 regulating the expression of RANKL and OPG and the osteoclast-inductive capacity of PDLSCs were confirmed by gain or loss of function assay. These data suggest that PDLSCs promote osteoclast differentiation via Runx2 upregulating RANKL and downregulating OPG, leading to enhanced root resorption that results in physiological exfoliation of primary teeth.[Abstract] [Full Text] [Related] [New Search]