These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endothelial nitric oxide synthase-enhancing G-protein coupled receptor antagonist inhibits pulmonary artery hypertension by endothelin-1-dependent and endothelin-1-independent pathways in a monocrotaline model.
    Author: Liu CP, Dai ZK, Huang CH, Yeh JL, Wu BN, Wu JR, Chen IJ.
    Journal: Kaohsiung J Med Sci; 2014 Jun; 30(6):267-78. PubMed ID: 24835346.
    Abstract:
    This study investigates whether endothelin-1 (ET-1) mediates monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and right ventricular hypertrophy (RVH), and if so, whether the G-protein coupled receptor antagonist KMUP-1 (7-{2-[4-(2-chlorobenzene)piperazinyl]ethyl}-1,3-dimethylxanthine) inhibits ET-1-mediated PA constriction and the aforementioned pathological changes. In a chronic rat model, intraperitoneal MCT (60 mg/kg) induced PAH and increased PA medial wall thickening and RV/left ventricle + septum weight ratio on Day 21 after MCT injection. Treatment with sublingual KMUP-1 (2.5 mg/kg/day) for 21 days prevented these changes and restored vascular endothelial nitric oxide synthase (eNOS) immunohistochemical staining of lung tissues. Western blotting analysis demonstrated that KMUP-1 enhanced eNOS, soluble guanylate cyclase, and protein kinase G levels, and reduced ET-1 expression and inactivated Rho kinase II (ROCKII) in MCT-treated lung tissue over long-term administration. In MCT-treated rats, KMUP-1 decreased plasma ET-1 on Day 21. KMUP-1 (3.6 mg/kg) maximally appeared at 0.25 hours in the plasma and declined to basal levels within 24 hours after sublingual administration. In isolated PA of MCT-treated rats, compared with control and pretreatment with l-NG-nitroarginine methyl ester (100 μM), KMUP-1 (0.1-100 μM) inhibited ET-1 (0.01 μM)-induced vasoconstriction. Endothelium-denuded PA sustained higher contractility in the presence of KMUP-1. In a 24-hour culture of smooth muscle cells (i.e., PA smooth muscle cells or PASMCs), KMUP-1 (0.1-10 μM) inhibited RhoA- and ET-1-induced RhoA activation. KMUP-1 prevented MCT-induced PAH, PA wall thickening, and RVH by enhancing eNOS and suppressing ET-1/ROCKII expression. In vitro, KMUP-1 inhibited ET-1-induced PA constriction and ET-1-dependent/independent RhoA activation of PASMCs. In summary, KMUP-1 attenuates ET-1-induced/ET-1-mediated PA constriction, and could thus aid in the treatment of PAH caused by MCT.
    [Abstract] [Full Text] [Related] [New Search]