These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deregulation of RB1 expression by loss of imprinting in human hepatocellular carcinoma.
    Author: Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U.
    Journal: J Pathol; 2014 Aug; 233(4):392-401. PubMed ID: 24838394.
    Abstract:
    The tumour suppressor gene RB1 is frequently silenced in many different types of human cancer, including hepatocellular carcinoma (HCC). However, mutations of the RB1 gene are relatively rare in HCC. A systematic screen for the identification of imprinted genes deregulated in human HCC revealed that RB1 shows imprint abnormalities in a high proportion of primary patient samples. Altogether, 40% of the HCC specimens (16/40) showed hyper- or hypomethylation at the CpG island in intron 2 of the RB1 gene. Re-analysis of publicly available genome-wide DNA methylation data confirmed these findings in two independent HCC cohorts. Loss of correct DNA methylation patterns at the RB1 locus leads to the aberrant expression of an alternative RB1-E2B transcript, as measured by quantitative real-time PCR. Demethylation at the intron 2 CpG island by DNMT1 knock-down or aza-deoxycytidine (DAC) treatment stimulated expression of the RB1-E2B transcript, accompanied by diminished RB1 main transcript expression. No aberrant DNA methylation was found at the RB1 locus in hepatocellular adenoma (HCA, n = 10), focal nodular hyperplasia (FNH, n = 5) and their corresponding adjacent liver tissue specimens. Deregulated RB1 expression due to hyper- or hypomethylation in intron 2 of the RB1 gene is found in tumours without loss of heterozygosity and is associated with a decrease in overall survival (p = 0.032) if caused by hypermethylation of CpG85. This unequivocally demonstrates that loss of imprinting represents an important additional mechanism for RB1 pathway inactivation in human HCC, complementing well-described molecular defects.
    [Abstract] [Full Text] [Related] [New Search]