These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TLR ligands upregulate RIG-I expression in human plasmacytoid dendritic cells in a type I IFN-independent manner. Author: Szabo A, Magyarics Z, Pazmandi K, Gopcsa L, Rajnavolgyi E, Bacsi A. Journal: Immunol Cell Biol; 2014 Sep; 92(8):671-8. PubMed ID: 24839978. Abstract: Plasmacytoid dendritic cells (pDCs) are professional type I interferon (IFN)-producing cells that play an essential role in antiviral immunity. In many cell types, detection of intracellular pathogens is mostly dependent on endosomal Toll-like receptors (TLRs) and cytosolic sensors, such as retinoic acid-inducible gene I (RIG-I). However, the possible interplay between these two systems has not yet been elucidated. Here we aimed to study the collaboration of endosomal TLRs and RIG-I in primary human pDCs. We found that under steady-state conditions, pDCs express RIG-I at very low level, but the expression of this receptor is rapidly and dramatically upregulated upon stimulation by the TLR7 ligand imiquimod or the TLR9 ligand type A CpG. We also demonstrated that pDCs are able to sense and respond to 5'-triphosphate double-stranded RNA (5'-ppp-dsRNA) only following activation by endosomal TLRs. Experiments on primary pDCs with functionally blocked IFN-α/β receptor 1 (IFNAR1) and those on human pDC leukemia (pDC-L) cells defective in type I IFN secretion indicated that the upregulation of RIG-I expression in pDCs upon stimulation by endosomal TLR occurs in a type I IFN-independent manner. Selective phosphorylation of signal transducer and activator of transcription 1 (STAT1) on tyrosine 701 could be identified as an early signaling event in this process. Our results show that in contrast to many other cell types, where RIG-I expression is induced by type I IFN, in pDCs a disparate mechanism is responsible for the upregulation of RIG-I. Our findings also indicate that along with autophagy, an additional mechanism is operating in pDCs to promote the detection of replicating viruses.[Abstract] [Full Text] [Related] [New Search]