These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells. Author: Molfetta R, Quatrini L, Capuano C, Gasparrini F, Zitti B, Zingoni A, Galandrini R, Santoni A, Paolini R. Journal: Eur J Immunol; 2014 Sep; 44(9):2761-70. PubMed ID: 24846123. Abstract: The NKG2D activating receptor on human NK cells mediates "altered self" recognition, as its ligands (NKG2DLs) are upregulated on target cells in a variety of stress conditions. Evidence collected in the past years shows that, even though expression of NKG2DLs acts as a danger signal that renders tumor cells susceptible to cytotoxicity, chronic exposure to soluble or membrane-bound NKG2DLs can lead to down-modulation of receptor expression and impairment of NKG2D-mediated cell functions. Here, we evaluated whether different cell-bound NKG2DLs, namely MICA and ULBP2, are equivalently able to induce NKG2D down-modulation on human NK cells. We found that although both ligands reduce NKG2D surface expression, MICA promotes a stronger receptor down-modulation than ULBP2, leading to a severe impairment of NKG2D-dependent NK-cell cytotoxicity. We also provide evidence that the ubiquitin pathway and c-Cbl direct MICA-induced but not ULBP2-induced NKG2D internalization and degradation, thus identifying a molecular mechanism to explain the differential effects of MICA and ULBP2 on NKG2D expression. A better understanding of the molecular mechanisms employed by the different NKG2DLs to control NKG2D surface expression could be useful for the development of anti-tumor strategies to restore a normal level of NKG2D receptors on human NK cells.[Abstract] [Full Text] [Related] [New Search]