These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genomic variation between Campylobacter jejuni isolates associated with milk-borne-disease outbreaks.
    Author: Revez J, Zhang J, Schott T, Kivistö R, Rossi M, Hänninen ML.
    Journal: J Clin Microbiol; 2014 Aug; 52(8):2782-6. PubMed ID: 24850348.
    Abstract:
    Bacterial genome sequencing has led to the development of new approaches for the analysis of food-borne epidemics and the exploration of the relatedness of outbreak-associated isolates and their separation from nonassociated isolates. Using Illumina technology, we sequenced a total of six isolates (two from patients, two from raw bulk milk, and two from dairy cattle) associated with a milk-borne Campylobacter jejuni outbreak in a farming family and compared their genomes. These isolates had identical pulsed-field gel electrophoresis (PFGE) types, and their multilocus sequence typing (MLST) type was ST-50. We used the Ma_1 isolate (milk) as the reference, and its genome was assembled and tentatively ordered using the C. jejuni NCTC 11168 genome as the scaffold. Using whole-genome MLST (wgMLST), we identified a total of three single-nucleotide polymorphisms (SNPs) and differences in poly(G or C) or poly(A or T) tracts in 12 loci among the isolates. Several new alleles not present in the database were detected. In contrast, the sequences of the unassociated C. jejuni strains P14 and 1-12S (both ST-50) differed by 420 to 454 alleles from the epidemic-associated isolates. We found that the fecal contamination of bulk tank milk occurred by highly related sequence variants of C. jejuni, which are reflected as SNPs and differences in the length of the poly(A or T) tracts. Poly(G or C) tracts are reversibly variable and are thus unstable markers for comparison. Further, unrelated strains of ST-50 were clearly separated from the outbreak-associated isolates, indicating that wgMLST is an excellent tool for analysis. In addition, other useful data related to the genes and genetic systems of the isolates were obtained.
    [Abstract] [Full Text] [Related] [New Search]