These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of very low amplitude intra-QRS potentials during the initial minutes of acute transmural myocardial ischemia.
    Author: Gomis P, Caminal P.
    Journal: J Electrocardiol; 2014; 47(4):512-9. PubMed ID: 24853085.
    Abstract:
    INTRODUCTION: Low-level electrocardiographic changes from depolarization wavefront may accompany acute myocardial ischemia. The purpose of this study was to assess the changes of microvolt amplitude intra-QRS potentials induced by elective percutaneous coronary interventions (PCI). METHODS: Fifty-seven patients with balloon inflation periods ranging from 3.1 to 7.3 minutes (4.9±0.7 min) were studied. Nine leads continuous high-resolution ECG before and during PCI were recorded and signal-averaged. Abnormal intra-QRS at microvolt level (μAIQP) were obtained using a signal modeling approach. μAIQP, R-wave amplitude and QRS duration were measured in the processed ECG during baseline and PCI episodes. RESULTS: The mean μAIQP amplitude significantly decreased for each of the standard 12 leads at the PCI event respect to baseline. Left anterior descending artery (LAD) occlusion resulted in a decrease μAIQP in both the precordial leads and the limb leads, while right coronary (RCA) and left circumflex (LCx) arteries occlusions mainly affected limb leads. R-wave amplitude increased during PCI in RCA and LCx groups in lead III but decreased in the precordial leads, while the amplitude decreased in the LAD group in lead III. The average duration of the QRS augmented in groups RCA and LCx but not in the LAD group. CONCLUSIONS: Abnormal intra-QRS potentials at the level of μV provide an excellent tool to characterize the very-low amplitude fragmentation of the QRS complex and its changes due to ischemic injuries. μAIQP shows promise as a new ECG index to measure electrophysiologic changes associated with acute myocardial ischemia.
    [Abstract] [Full Text] [Related] [New Search]