These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of preferential cyclooxygenase-2 inhibition by meloxicam in ischemia/reperfusion injury of the rat liver. Author: Tolba RH, Fet N, Yonezawa K, Taura K, Nakajima A, Hata K, Okamura Y, Uchinami H, Klinge U, Minor T, Yamaoka Y, Yamamoto Y. Journal: Eur Surg Res; 2014; 53(1-4):11-24. PubMed ID: 24854565. Abstract: BACKGROUND: Ischemia/reperfusion injury (IRI) is one of the major clinical problems in liver and transplant surgery. Livers subjected to warm ischemia in vivo often show a severe dysfunction and the release of numerous inflammatory cytokines and arachidonic acid metabolites. Cyclooxygenase (COX)-2 is the inducible isoform of an intracellular enzyme that converts arachidonic acid into prostaglandins. The aim of the study was to evaluate the effect of COX-2 inhibition and the role of Kupffer cells in IRI of the liver. METHODS: Male Wistar rats [250- 280 g body weight (BW)] were anesthetized and subjected to 30-min warm ischemia of the liver (Pringle's maneuver) and 60-min reperfusion after median laparotomy. The I/R group received no additional treatment. In the COX-2 inhibitor (COX-2I) group, the animals received 1 mg/kg BW meloxicam prior to operation. Gadolinium chloride (GdCl3) (10 mg/kg BW) was given 24 h prior to operation in the GdCl3 and GdCl3 + COX-2I groups for the selective depletion of Kupffer cells. The GdCl3 + COX-2I group received both GdCl3 and meloxicam treatment prior to operation. Blood and liver samples were obtained at the end of the experiments for further investigations. RESULTS: After 30 min of warm ischemia in vivo, severe hepatocellular damage was observed in the I/R group. These impairments could be significantly prevented by the selective COX-2 inhibition and the depletion of Kupffer cells. Alanine aminotransferase was significantly reduced upon meloxicam and GdCl3 treatment compared to the I/R group: I/R, 3,240 ± 1,262 U/l versus COX-2I, 973 ± 649 U/l, p < 0.001; I/R versus GdCl3, 1,611 ± 600 U/l, p < 0.05, and I/R versus GdCl3 + COX-2I, 1,511 ± 575 U/l, p < 0.01. Plasma levels of tumor necrosis factor alpha (TNF-α) were significantly reduced in the COX-2I treatment group compared to I/R (3.5 ± 1.5 vs. 16.3 ± 11.7 pg/ml, respectively; p < 0.05). Similarly, the amount of TxB2, a marker for COX-2 metabolism, was significantly reduced in the meloxicam treatment groups compared to the I/R group: I/R, 22,500 ± 5,210 pg/ml versus COX-2I, 1,822 ± 938 pg/ml, p < 0.001, and I/R versus GdCl3 + COX-2I, 1,530 ± 907 pg/ml, p < 0.001. All values are given as mean ± SD (n = 6). CONCLUSION: These results suggest that the inhibition of COX-2 suppressed the initiation of an inflammatory cascade by attenuating the release of TNF-α, which is an initiator of the inflammatory reaction in hepatic IRI. Therefore, we conclude that preferential inhibition of COX-2 is a possible therapeutic approach against warm IRI of the liver.[Abstract] [Full Text] [Related] [New Search]