These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of glycogen synthase kinase 3 ameliorates liver ischemia/reperfusion injury via an energy-dependent mitochondrial mechanism. Author: Fu H, Xu H, Chen H, Li Y, Li W, Zhu Q, Zhang Q, Yuan H, Liu F, Wang Q, Miao M, Shi X. Journal: J Hepatol; 2014 Oct; 61(4):816-24. PubMed ID: 24862449. Abstract: BACKGROUND & AIMS: The mechanisms of glycogen synthase kinase-3 (GSK-3)-mediated cytoprotection during liver ischemia/reperfusion (I/R) remain controversial, particularly in older organs. This study explores the role and potential mechanisms of GSK-3 in young and aging livers. METHODS: A rodent partial warm I/R model was used to evaluate the therapeutic potential of GSK-3 modulation during hepatic I/R in young and aging Sprague-Dawley rats. RESULTS: GSK-3 inhibition through IPC or SB216763 (SB21) preconditioning protected young rats from I/R-induced liver injury. This protection was absent in old animals but could be restored by glucose infusion prior to the I/R insult. The protection conferred by GSK-3 inhibition depended on mitochondrial metabolism regulation. Indeed, the inhibition of GSK-3 suppressed mitochondrial permeability transition pore (MPTP) opening, triggering mitohormesis in young animals, whereas insufficient fuel suppressed mitochondrial metabolism and inactivated the GSK-3-related protection in old animals. SB21 and glucose reactivated the mitochondrial F0F1-ATPase and subsequent protective cascades in the senescent liver. These effects were antagonized by an ATPase inhibitor and by an MPTP opener. CONCLUSIONS: The protection conferred by GSK-3 inhibition during hepatic I/R insult is energy dependent, particularly in senescent livers. These findings demonstrate a key role for GSK-3-related mitochondrial energy homeostasis, which may shed new light on the clinical use of GSK-3 inhibitors to protect liver function in surgical settings, particularly for older patients.[Abstract] [Full Text] [Related] [New Search]