These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil.
    Author: Liao X, Zhao D, Yan X, Huling SG.
    Journal: J Hazard Mater; 2014 Jul 15; 276():26-34. PubMed ID: 24862467.
    Abstract:
    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed in the soil. Oxy-PAHs including 1H-phenalen-1-one, 9H-fluoren-9-one, and 1,8-naphthalic anhydride were also produced during persulfate oxidation of PAHs. Concentration of 1,8-naphthalic anhydride at 4h in thermally activated (50°C) persulfate oxidation (TAPO) treatment increased 12.7 times relative to the oxidant-free control. Additionally, the oxy-PAHs originally present and those generated during oxidation can be oxidized by unactivated or thermally activated persulfate oxidation. For example, 9H-fluoren-9-one concentration decreased 99% at 4h in TAPO treatment relative to the control. Thermally activated persulfate resulted in greater oxy-PAHs removal than unactivated persulfate. Overall, both unactivated and thermally activated persulfate oxidation of PAH-contaminated soil reduced PAH mass, and oxidized most of the reaction byproducts. Consequently, this treatment process could limit environmental risk related to the parent compound and associated reaction byproducts.
    [Abstract] [Full Text] [Related] [New Search]