These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simple capillary electrophoresis-mass spectrometry method for complex glycan analysis using a flow-through microvial interface.
    Author: Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, Chen DD.
    Journal: Anal Chem; 2014 Jul 01; 86(13):6479-86. PubMed ID: 24873509.
    Abstract:
    A flow-through microvial is used to interface capillary electrophoresis and mass spectrometry (CE-MS) to develop a method for simultaneous profiling both neutral and sialylated glycans without derivatization or labeling. The CE separation was performed at near-zero electroosmotic flow in a capillary with neutral, hydrophilic coating, using 50 mM ammonium acetate in 20% methanol (pH 3.1) as the background electrolyte. The method was optimized with reversed CE polarity and negative ion ESI-MS. Enzymatically released N-glycans from human immunoglobulin G (IgG) were used as the test sample. The approach was also used to study the more complex N-glycans from recombinant human erythropoietin (rHuEPO) expressed in Chinese hamster ovary (CHO) cells. Glycoscreening of rHuEPO was performed using a triple quadrupole MS and an ultrahigh resolution TOF-MS. The high sensitivity and high mass accuracy of the TOF-MS revealed the presence of more than 70 glycans. Three mono- and di-sialylated tetra-antennary N-glycans and one mono-sialylated tri-antennary N-glycan of rHuEPO are reported for the first time. Further glycan heterogeneity was identified of the highly sialylated N-glycans of rHuEPO by extensive acetylation, Neu5Ac/Neu5Gc variation and the presence of N-acetyl-lactosamine repeats. For comparative purposes, porous graphitic carbon-based LC-MS/MS was also used to glycoprofile rHuEPO. This work demonstrates the potential of CE-MS to provide a comprehensive glycosylation profile with detailed features of the secondary glycan modifications. The CE-MS based method eliminates the need to label the N-glycans, as well as the requirement to desialylate before analysis, and could complement other established techniques for glycan characterization of therapeutic glycoproteins.
    [Abstract] [Full Text] [Related] [New Search]