These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of (14)C-catechol in an agricultural soil. Author: Shan J, Wang Y, Gu J, Zhou W, Ji R, Yan X. Journal: Chemosphere; 2014 Jul; 107():109-114. PubMed ID: 24875877. Abstract: Both biochar and earthworms can exert influence on behaviors of soil-borne monomeric phenols in soil; however, little was known about the combined effects of biochar and earthworm activities on fate of these chemicals in soil. Using (14)C-catechol as a representative, the mineralization, transformation and residue distribution of phenolic humus monomer in soil amended with different amounts of biochar (0%, 0.05%, 0.5%, and 5%) without/with the geophagous earthworm Metaphire guillelmi were investigated. The results showed biochar at amendment rate <0.5% did not affect (14)C-catechol mineralization, whereas 5% biochar amendment significantly inhibited the mineralization. Earthworms did not affect the mineralization of (14)C-catechol in soil amended with <0.5% biochar, but significantly enhanced the mineralization in 5% biochar amended soil when they were present in soil for 9 d. When earthworms were removed from the soil, the mineralization of (14)C-catechol was significantly lower than that of in earthworm-free soil indicating that (14)C-catecholic residues were stabilized during their passage through earthworm gut. The assimilation of (14)C by earthworms was low (1.2%), and was significantly enhanced by biochar amendment, which was attributed to the release of biochar-associated (14)C-catecholic residues during gut passage of earthworm.[Abstract] [Full Text] [Related] [New Search]