These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoxia-inducible lipid droplet-associated (HILPDA) is a novel peroxisome proliferator-activated receptor (PPAR) target involved in hepatic triglyceride secretion.
    Author: Mattijssen F, Georgiadi A, Andasarie T, Szalowska E, Zota A, Krones-Herzig A, Heier C, Ratman D, De Bosscher K, Qi L, Zechner R, Herzig S, Kersten S.
    Journal: J Biol Chem; 2014 Jul 11; 289(28):19279-93. PubMed ID: 24876382.
    Abstract:
    Peroxisome proliferator-activated receptors (PPARs) play major roles in the regulation of hepatic lipid metabolism through the control of numerous genes involved in processes such as lipid uptake and fatty acid oxidation. Here we identify hypoxia-inducible lipid droplet-associated (Hilpda/Hig2) as a novel PPAR target gene and demonstrate its involvement in hepatic lipid metabolism. Microarray analysis revealed that Hilpda is one of the most highly induced genes by the PPARα agonist Wy14643 in mouse precision cut liver slices. Induction of Hilpda mRNA by Wy14643 was confirmed in mouse and human hepatocytes. Oral dosing with Wy14643 similarly induced Hilpda mRNA levels in livers of wild-type mice but not Ppara(-/-) mice. Transactivation studies and chromatin immunoprecipitation showed that Hilpda is a direct PPARα target gene via a conserved PPAR response element located 1200 base pairs upstream of the transcription start site. Hepatic overexpression of HILPDA in mice via adeno-associated virus led to a 4-fold increase in liver triglyceride storage, without any changes in key genes involved in de novo lipogenesis, β-oxidation, or lipolysis. Moreover, intracellular lipase activity was not affected by HILPDA overexpression. Strikingly, HILPDA overexpression significantly impaired hepatic triglyceride secretion. Taken together, our data uncover HILPDA as a novel PPAR target that raises hepatic triglyceride storage via regulation of triglyceride secretion.
    [Abstract] [Full Text] [Related] [New Search]