These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Crystalline anatase-rich titanium can reduce adherence of oral streptococci.
    Author: Dorkhan M, Hall J, Uvdal P, Sandell A, Svensäter G, Davies JR.
    Journal: Biofouling; 2014; 30(6):751-9. PubMed ID: 24881929.
    Abstract:
    Dental implant abutments that emerge through the mucosa are rapidly covered with a salivary protein pellicle to which bacteria bind, initiating biofilm formation. In this study, adherence of early colonizing streptococci, Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis and Streptococcus sanguinis to two saliva-coated anodically oxidized surfaces was compared with that on commercially pure titanium (CpTi). Near edge X-ray absorption (NEXAFS) showed crystalline anatase was more pronounced on the anodically oxidized surfaces than on the CpTi. As revealed by fluorescence microscopy, a four-species mixture, as well as individual bacterial species, exhibited lower adherence after 2 h to the saliva-coated, anatase-rich surfaces than to CpTi. Since wettability did not differ between the saliva-coated surfaces, differences in the concentration and/or configuration of salivary proteins on the anatase-rich surfaces may explain the reduced bacterial binding effect. Anatase-rich surfaces could thus contribute to reduced overall biofilm formation on dental implant abutments through diminished adherence of early colonizers.
    [Abstract] [Full Text] [Related] [New Search]