These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake.
    Author: Godar SC, Bortolato M, Castelli MP, Casti A, Casu A, Chen K, Ennas MG, Tambaro S, Shih JC.
    Journal: J Psychiatr Res; 2014 Sep; 56():1-9. PubMed ID: 24882701.
    Abstract:
    The termination of serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is regulated by its uptake by the 5-HT transporter (5-HTT), as well as its degradation by monoamine oxidase (MAO)-A. MAO-A deficiency results in a wide set of behavioral alterations, including perseverative behaviors and social deficits. These anomalies are likely related to 5-HTergic homeostatic imbalances; however, the role of 5-HTT in these abnormalities remains unclear. To ascertain the role of 5-HTT in the behavioral anomalies associated to MAO-A deficiency, we tested the behavioral effects of its blocker fluoxetine on perseverative, social and aggressive behaviors in transgenic animals with hypomorphic or null-allele MAO-A mutations. Acute treatment with the 5-HTT blocker fluoxetine (10 mg/kg, i.p.) reduced aggressive behavior in MAO-A knockout (KO) mice and social deficits in hypomorphic MAO-A(Neo) mice. Furthermore, this treatment also reduced perseverative responses (including marble burying and water mist-induced grooming) in both MAO-A mutant genotypes. Both MAO-A mutant lines displayed significant reductions in 5-HTT expression across the prefrontal cortex, amygdala and striatum, as quantified by immunohistochemical detection; however, the down-regulation of 5-HTT in MAO-A(Neo) mice was more pervasive and widespread than in their KO counterparts, possibly indicating a greater ability of the hypomorphic line to enact compensatory mechanisms with respect to 5-HT homeostasis. Collectively, these findings suggest that the behavioral deficits associated with low MAO-A activity may reflect developmental alterations of 5-HTT within 5-HTergic neurons. Furthermore, the translational implications of our results highlight 5-HT reuptake inhibition as an interesting approach for the control of aggressive outbursts in MAO-A deficient individuals.
    [Abstract] [Full Text] [Related] [New Search]