These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation. Author: Tong S, Zhang H, Shen M, Ito Y, Yan J. Journal: J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jul 01; 962():44-51. PubMed ID: 24893270. Abstract: The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6mm i.d., 5μm). The mobile phase was a mixture of acetonitrile and 0.10molL(-1) of phosphate buffer at pH 2.68 containing 20mmolL(-1) of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiometries for all the inclusion complex of cyclodextrin-enantiomers were 1:1.[Abstract] [Full Text] [Related] [New Search]