These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization.
    Author: Thompson RA, Trinh CT.
    Journal: Biotechnol Bioeng; 2014 Nov; 111(11):2200-8. PubMed ID: 24895195.
    Abstract:
    Biodiesels in the form of fatty acyl ethyl esters (FAEEs) are a promising next generation biofuel due to their chemical properties and compatibility with existing infrastructure. It has recently been shown that expression of a bacterial acyl-transferase in the established industrial workhorse Saccharomyces cerevisiae can lead to production of FAEEs by condensation of fatty acyl-CoAs and ethanol. In contrast to recent strategies to produce FAEEs in S. cerevisiae through manipulation of de novo fatty acid biosynthesis or a series of arduous genetic manipulations, we introduced a novel genetic background, which is comparable in titer to previous reports with a fraction of the genetic disruption by aiming at increasing the fatty acyl-CoA pools. In addition, we combined metabolic engineering with modification of culture conditions to produce a maximum titer of over 25 mg/L FAEEs, a 40% improvement over previous reports and a 17-fold improvement over our initial characterizations. Biotechnol. Bioeng. 2014;111: 2200-2208. © 2014 Wiley Periodicals, Inc.
    [Abstract] [Full Text] [Related] [New Search]