These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation.
    Author: Li Q, Lv S, Tang Z, Liu M, Zhang D, Yang Y, Chen X.
    Journal: Int J Pharm; 2014 Aug 25; 471(1-2):412-20. PubMed ID: 24905776.
    Abstract:
    Herein, we develop a co-delivery system of paclitaxel (PTX) and doxorubicin hydrochloride (DOX·HCl) based on methoxypoly(ethylene glycol)-block-poly(L-glutamic acid) (mPEG-b-PLG) for cancer treatment. PTX was grafted to the mPEG-b-PLG by esterification to give mPEG-b-PLG-g-PTX. DOX·HCl was encapsulated via electrostatic interaction and hydrophobic stack between the DOX·HCl and mPEG-b-PLG-g-PTX in aqueous solution. The release rate of DOX·HCl from the drug-loaded nanoparticles (mPEG-b-PLG-g-PTX-DOX) was slow at blood pH (pH 7.4), but obviously increased at endosome pH (pH 5.4). The mPEG-b-PLG-g-PTX-DOX exhibited slight synergistic effect in inhibition of proliferation of A549 and MCF-7 human cancer cells. For in vivo treatment of xenograft human breast tumor (MCF-7), the mPEG-b-PLG-g-PTX-DOX nanoparticles exhibited remarkable tumor inhibition effect with a 95.5% tumor-suppression-rate which was significantly higher than those of related single anticancer agents such as free DOX·HCl and mPEG-b-PLG-g-PTX. These results indicated that the mPEG-b-PLG-g-PTX-DOX would have great potential in cancer therapy.
    [Abstract] [Full Text] [Related] [New Search]