These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypertrophic changes of the teres minor muscle in rotator cuff tears: quantitative evaluation by magnetic resonance imaging.
    Author: Kikukawa K, Ide J, Kikuchi K, Morita M, Mizuta H, Ogata H.
    Journal: J Shoulder Elbow Surg; 2014 Dec; 23(12):1800-1805. PubMed ID: 24906902.
    Abstract:
    BACKGROUND: Few reports have assessed the teres minor (TM) muscle in rotator cuff tears. This study aimed to quantitatively analyze the morphologic changes of the TM muscle in patients with or without rotator cuff tears by magnetic resonance imaging (MRI). METHODS: This retrospective study consisted of 279 subjects classified on the basis of interpretations of conventional MRI observations into 6 groups: no cuff tear; partial-thickness supraspinatus (SSP) tear; full-thickness SSP tear; SSP and subscapularis tears; SSP and infraspinatus (ISP) tears; and SSP, ISP, and subscapularis tears. With use of ImageJ software (National Institutes of Health, Bethesda, MD, USA) for oblique sagittal MRI, we measured the areas of ISP, TM, and anatomic external rotation (ISP + TM) muscles on the most lateral side in which the scapular spine was in contact with the scapular body. The occupational ratios of the TM muscle area to the anatomic external rotation muscle area were calculated. Ratios above the maximum of the 95% confidence intervals of the occupational ratio in the no-tear group were defined as hypertrophy of the TM muscle. RESULTS: Occupational ratios of the TM muscle in the no-tear group followed a normal distribution, and ratios >0.288 were defined as hypertrophic. Hypertrophic changes of the TM muscle were confirmed in rotator cuff tears involving the ISP tendon. A negative correlation was found between the occupational ratios of TM and ISP (P < .001). CONCLUSION: The TM muscle appeared hypertrophic in rotator cuff tears involving the ISP, and the progression of ISP muscle atrophy seemed to induce the development of this compensatory hypertrophy.
    [Abstract] [Full Text] [Related] [New Search]