These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Author: Almeida HV, Liu Y, Cunniffe GM, Mulhall KJ, Matsiko A, Buckley CT, O'Brien FJ, Kelly DJ. Journal: Acta Biomater; 2014 Oct; 10(10):4400-9. PubMed ID: 24907658. Abstract: The objective of this study was to develop a scaffold derived from cartilaginous extracellular matrix (ECM) that could be used as a growth factor delivery system to promote chondrogenesis of stem cells. Dehydrothermal crosslinked scaffolds were fabricated using a slurry of homogenized porcine articular cartilage, which was then seeded with human infrapatellar-fat-pad-derived stem cells (FPSCs). It was found that these ECM-derived scaffolds promoted superior chondrogenesis of FPSCs when the constructs were additionally stimulated with transforming growth factor (TGF)-β3. Cell-mediated contraction of the scaffold was observed, which could be limited by the additional use of 1-ethyl-3-3dimethyl aminopropyl carbodiimide (EDAC) crosslinking without suppressing cartilage-specific matrix accumulation within the construct. To further validate the utility of the ECM-derived scaffold, we next compared its chondro-permissive properties to a biomimetic collagen-hyaluronic acid (HA) scaffold optimized for cartilage tissue engineering (TE) applications. The cartilage-ECM-derived scaffold supported at least comparable chondrogenesis to the collagen-HA scaffold, underwent less contraction and retained a greater proportion of synthesized sulfated glycosaminoglycans. Having developed a promising scaffold for TE, with superior chondrogenesis observed in the presence of exogenously supplied TGF-β3, the final phase of the study explored whether this scaffold could be used as a TGF-β3 delivery system to promote chondrogenesis of FPSCs. It was found that the majority of TGF-β3 that was loaded onto the scaffold was released in a controlled manner over the first 10days of culture, with comparable long-term chondrogenesis observed in these TGF-β3-loaded constructs compared to scaffolds where the TGF-β3 was continuously added to the media. The results of this study support the use of cartilage-ECM-derived scaffolds as a growth factor delivery system for use in articular cartilage regeneration.[Abstract] [Full Text] [Related] [New Search]