These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Author: Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Müller CR, Lindlöf M, Kaariainen H, de la Chapellet A, Kiuru A, Savontaus ML, Gilgenkrantz H, Récan D, Chelly J, Kaplan JC, Covone AE, Archidiacono N, Romeo G, Liechti-Gailati S, Schneider V, Braga S, Moser H, Darras BT, Murphy P, Francke U, Chen JD, Morgan G, Denton M, Greenberg CR, Wrogemann K, Blonden LA, van Paassen MB, van Ommen GJ, Kunkel LM. Journal: Am J Hum Genet; 1989 Oct; 45(4):498-506. PubMed ID: 2491009. Abstract: About 60% of both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) is due to deletions of the dystrophin gene. For cases with a deletion mutation, the "reading frame" hypothesis predicts that BMD patients produce a semifunctional, internally deleted dystrophin protein, whereas DMD patients produce a severely truncated protein that would be unstable. To test the validity of this theory, we analyzed 258 independent deletions at the DMD/BMD locus. The correlation between phenotype and type of deletion mutation is in agreement with the "reading frame" theory in 92% of cases and is of diagnostic and prognostic significance. The distribution and frequency of deletions spanning the entire locus suggests that many "in-frame" deletions of the dystrophin gene are not detected because the individuals bearing them are either asymptomatic or exhibit non-DMD/non-BMD clinical features.[Abstract] [Full Text] [Related] [New Search]