These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment. Author: Hadley A, Ding GX. Journal: Med Dosim; 2014; 39(4):314-9. PubMed ID: 24913466. Abstract: Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error-induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.[Abstract] [Full Text] [Related] [New Search]