These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATP-dependent Ca2+ transport in the rat parotid basolateral plasma membrane is regulated by calmodulin.
    Author: Ambudkar IS, Horn VJ, Baum BJ.
    Journal: Arch Biochem Biophys; 1989 Feb 01; 268(2):576-84. PubMed ID: 2492420.
    Abstract:
    Calmodulin regulation of ATP-dependent Ca2+ transport activity was assessed in inverted basolateral plasma membrane vesicles (BLMV) isolated from rat parotid glands. The initial rate of Ca2+ transport in media containing 100 nM Ca2+ was stimulated by approximately 60% at maximal concentrations (300 nM) of exogenously added calmodulin (CAM). Half-maximal activation was obtained at 50 and 175 nM CAM in KCl and mannitol containing assay media, respectively. In the KCl medium, addition of 300 nM CAM increased the affinity of the BLMV Ca2+ transport activity for Ca2+ from approximately 70 nM, in the absence of added CAM, to approximately 50 nM. Vmax was consistently increased by approximately 20% under these conditions. When BLMV were treated with ethylene glycol bis(beta-aminoethylether) N,N'-tetraacetic acid (EGTA) (200 microM), the affinity of the transporter for Ca2+ decreased by 50% to approximately 150 nM, with no change in Vmax. When CAM was added to the EGTA-treated membranes, Ca2+ transport activity was comparable to that obtained when CAM was added directly to control, untreated BLMV. The CAM antagonists, trifluoperazine (TFP), W-7, and calmidazolium, inhibited Ca2+ transport in the presence of CAM. Half-maximal inhibition of transport was achieved by 12 microM TFP and 20 microM W-7. Calmidazolium (1 microM) inhibited Ca2+ transport by 75%. The inhibitory effects on ATP-dependent Ca2+ transport exerted by these agents were not due to an increase in the passive permeability of the membranes to Ca2+. Furthermore, in the absence of added CAM, the inhibitory effects of these agents on initial Ca2+ transport rate was decreased. The data presented suggest that the Ca2+-dependent interaction of CAM with the ATP-dependent Ca2+ transporter in rat parotid BLMV modifies the kinetic properties of this Ca2+ transporting mechanism.
    [Abstract] [Full Text] [Related] [New Search]