These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients. Author: Metters JP, Kampouris DK, Banks CE. Journal: Analyst; 2014 Aug 21; 139(16):3999-4004. PubMed ID: 24926967. Abstract: It has recently been demonstrated that 2-aminoacetophenone (2-AA) is a chemical indicator in exhaled air/breath of Pseudomonas aeruginosa infection associated with progressive life threatening decline of lung function in cystic fibrosis sufferers [Scott-Thomas et al., BMC Pulm. Med., 2010, 10, 56]. Currently the detection of 2-AA involves laboratory based instrumentation such as mass spectrometry and a hand-held point-of-care type breath device would be ideal in providing real-time results within seconds to accelerate patient care decision-making processes. To this end, we demonstrate proof-of-concept that the chemical marker 2-AA, indicative of Pseudomonas aeruginosa infection, can be measured using electrochemical based sensing strategies. A range of commercially available electrode substrates are explored demonstrating for the first time that 2-AA is electrochemically active within aqueous based solutions providing an (electro)analytical signal. Glassy carbon, boron-doped diamond and platinum electrodes have been explored towards the electrochemical oxidation of 2-AA. Electrode fouling is observed requiring pre-treatment in the form of mechanical polishing between voltammetric scans and measurements. To alleviate this, screen-printed graphite electrodes are shown to be a more viable option for implementation into breath sensing devices and overcome the fouling problem since due to their low cost and disposable nature, a new electrode can be used for each measurement. The analytical utility of the platinum, screen-printed and boron-doped diamond electrodes were found to correspond to 6.85, 7.66 and 4.86 mM respectively. The challenges associated with the electrochemical sensing of 2-AA in breath that need to be overcome are discussed. This generic approach where electrochemical based technology is used to provide measurements for chemical markers in exhaled air/breath for medical diagnostics termed electrochemical breathprints (ec-breathprints), has the potential to be developed into a hand-held point-of-care breath diagnostic tool for identifying Pseudomonas aeruginosa infection in exhaled air/breath.[Abstract] [Full Text] [Related] [New Search]