These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes.
    Author: Omar BA, Liehua L, Yamada Y, Seino Y, Marchetti P, Ahrén B.
    Journal: Diabetologia; 2014 Sep; 57(9):1876-83. PubMed ID: 24939431.
    Abstract:
    AIMS/HYPOTHESIS: Inhibition of the enzyme dipeptidyl peptidase 4 (DPP-4), which cleaves and inactivates glucagon-like peptide 1 (GLP-1), is a glucose-lowering strategy in type 2 diabetes. Since DPP-4 is a ubiquitously distributed enzyme, we examined whether it is expressed in islets and whether an islet effect to inhibit DPP-4 may result in stimulated insulin secretion. METHODS: We investigated DPP-4 expression and activity in the islets of mouse models of obesity as well as human islets from non-diabetic and type 2 diabetic donors. We further investigated whether inhibition with DPP-4 inhibitors could promote insulin secretion via islet GLP-1 in isolated islets. RESULTS: DPP-4 was readily detected in mouse and human islets with species-specific cellular localisation. In mice, DPP-4 was expressed predominantly in beta cells, whereas in humans it was expressed nearly exclusively in alpha cells. DPP-4 activity was significantly increased in islets from diet-induced obese mice compared with mice fed a control diet. In humans, DPP-4 activity was significantly lower in islets from type 2 diabetic donors than in non-diabetic donors. In human islets, there was a significant positive correlation between DPP-4 activity and insulin secretory response to 16.7 mmol/l glucose. Treatment of mouse islets with the DPP-4 inhibitors, NVPDPP728 and vildagliptin, resulted in a significant potentiation of insulin secretion in a GLP-1-dependent manner, as this was inhibited by the GLP-1 receptor antagonist, Exendin (9-39), and was retained in glucose-dependent insulinotropic polypeptide (GIP) receptor-deficient mice but lost in mice lacking GLP-1 receptors or both incretin receptors. Human islets treated with the DPP-4 inhibitor, vildagliptin, showed increased secretion of insulin and intact GLP-1. CONCLUSIONS/INTERPRETATION: We conclude that DPP-4 is present and active in mouse and human islets, is regulated by the disease state, and that inhibition of islet DPP-4 activity can have direct effects on islet function. Inhibiting islet DPP-4 activity may therefore contribute to the insulin-secretory and glucose-lowering action of DPP-4 inhibition.
    [Abstract] [Full Text] [Related] [New Search]