These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. Author: Zhang XS, Zhang X, Wu Q, Li W, Wang CX, Xie GB, Zhou XM, Shi JX, Zhou ML. Journal: J Surg Res; 2014 Nov; 192(1):206-13. PubMed ID: 24948541. Abstract: BACKGROUND: Neuroinflammation has been proven to play a crucial role in early brain injury pathogenesis and represents a target for treatment of subarachnoid hemorrhage (SAH). Astaxanthin (ATX), a dietary carotenoid, has been shown to have powerful anti-inflammation property in various models of tissue injury. However, the potential effects of ATX on neuroinflammation in SAH remain uninvestigated. The goal of this study was to investigate the protective effects of ATX on neuroinflammation in a rat prechiasmatic cistern SAH model. METHODS: Rats were randomly distributed into multiple groups undergoing the sham surgery or SAH procedures, and ATX (25 mg/kg or 75 mg/kg) or equal volume of vehicle was given by oral gavage at 30 min after SAH. All rats were sacrificed at 24 h after SAH. Neurologic scores, brain water content, blood-brain barrier permeability, and neuronal cell death were examined. Brain inflammation was evaluated by means of expression changes in myeloperoxidase, cytokines (interleukin-1β, tumor necrosis factor-α), adhesion molecules (intercellular adhesion molecule-1), and nuclear factor kappa B DNA-binding activity. RESULTS: Our data indicated that post-SAH treatment with high dose of ATX could significantly downregulate the increased nuclear factor kappa B activity and the expression of inflammatory cytokines and intercellular adhesion molecule-1 in both messenger RNA transcription and protein synthesis. Moreover, these beneficial effects lead to the amelioration of the secondary brain injury cascades including cerebral edema, blood-brain barrier disruption, neurological dysfunction, and neuronal degeneration. CONCLUSIONS: These results indicate that ATX treatment is neuroprotective against SAH, possibly through suppression of cerebral inflammation.[Abstract] [Full Text] [Related] [New Search]