These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel ApoA-I truncation (ApoA-IMytilene) associated with decreased ApoA-I production.
    Author: Anthanont P, Polisecki E, Asztalos BF, Diffenderfer MR, Barrett PH, Millar JS, Billheimer J, Cuchel M, Rader DJ, Schaefer EJ.
    Journal: Atherosclerosis; 2014 Aug; 235(2):470-6. PubMed ID: 24950002.
    Abstract:
    OBJECTIVE: We report a novel apolipoprotein (apo) A-I truncation (apoA-IMytilene) due to a heterozygous nonsense mutation (c.718C > T, p.Gln216*) in a 68-year-old male proband with premature coronary heart disease (CHD), corneal arcus, and very low plasma concentrations of HDL cholesterol (HDL-C) and apoA-I. Two family members also had the same mutation. Our objectives were to characterize the kindred and to examine the kinetics of apoA-I, as well as cellular cholesterol efflux capacity in the proband. METHODS: We carried out the kinetic studies using a primed constant infusion of [5,5,5-D3]L-leucine and isotopic enrichment was determined by gas chromatography mass spectrometry in the proband and seven controls with low HDL-C. To assess cellular cholesterol efflux capacity, we used a validated ex vivo system that involved incubation of J774 macrophages with apoB-depleted serum from the proband, five controls with normal HDL-C, and two controls with low HDL-C. RESULTS: Stable isotope kinetic studies indicated that the proband had an apoA-I production rate (PR) that was 41% lower than the mean PR observed in low HDL-C controls (n = 7). The cellular cholesterol efflux capacity assessment showed normalized cholesterol efflux capacity in the proband was decreased by 36% compared to the mean normalized cholesterol efflux capacity of normal controls (n = 5). CONCLUSIONS: Our data indicate that this novel heterozygous apoA-I truncation is associated with markedly decreased levels of HDL-C, plasma apoA-I, and apoA-I in large α-1 HDL particles, as well as decreased total cellular cholesterol efflux and decreased apoA-I production.
    [Abstract] [Full Text] [Related] [New Search]