These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regionally selective activation of ERK and JNK in morphine paradoxical hyperalgesia: a step toward improving opioid pain therapy.
    Author: Sanna MD, Ghelardini C, Galeotti N.
    Journal: Neuropharmacology; 2014 Nov; 86():67-77. PubMed ID: 24950452.
    Abstract:
    In addition to analgesia, opioid agonists may increase pain sensitivity under different conditions varying dose and administration pattern. While opioid hyperalgesia induced by tolerance and withdrawal is largely studied, little is known on the mechanisms underlying ultra-low dose morphine hyperalgesia. This pronociceptive response appears to play an opposing role in morphine analgesia and might have clinical relevance. Ultra-low dose morphine elicited thermal hyperalgesia through activation of μ opioid receptors. To elucidate the intracellular mechanism of morphine nociceptive behaviour, we investigated the mitogen-activated protein kinase (MAPK), crucial pathways in pain hypersensitivity. The catalytic activity of extracellular signal-regulated kinase (ERK), p38, c-Jun-N-terminal kinase (JNK), upstream modulators and transcription factors was investigated in the mouse periaqueductal grey matter (PAG), thalamus and prefrontal cortex by western blotting. Ultra-low dose morphine intensively increased pERK1 contents in the PAG and cortex and, to a lesser extent, increased cortical ERK2 and JNK phosphorylation. No involvement of p38 was detected. Morphine exposure also increased phosphorylation of cortical c-Jun whereas levels of phosphorylated cAMP response element-binding protein (CREB) remained unmodified. Blockade of protein kinase C (PKC) prevented increases in phosphorylation showing a PKC-dependent mechanism of activation. Pharmacological inhibitors of PKC, ERK, and JNK activity prevented morphine hyperalgesia. No modulation of MAPK and transcription factors' activity was detected in the thalamus. These results support the concept that selective activation of ERK and JNK on descending pathways plays an important role in ultra-low dose morphine hyperalgesia. The modulation of these signalling processes might improve pain management with opiate analgesics.
    [Abstract] [Full Text] [Related] [New Search]