These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A static pressure sensitive receptor APJ promote H9c2 cardiomyocyte hypertrophy via PI3K-autophagy pathway.
    Author: Xie F, Liu W, Feng F, Li X, Yang L, Lv D, Qin X, Li L, Chen L.
    Journal: Acta Biochim Biophys Sin (Shanghai); 2014 Aug; 46(8):699-708. PubMed ID: 24966188.
    Abstract:
    This study is designed to investigate whether APJ receptor acts as a sensor in static pressure-induced cardiomyocyte hypertrophy and to investigate the mechanism of PI3K-autophagy pathway. The left ventricular hypertrophy rat model was established by coarctation of abdominal aorta. H9c2 rat cardiomyocytes were cultured in the presence of static pressure which was given by a custom-made pressure incubator. The results revealed that the expression of apelin/APJ system, PI3K, Akt and their phosphorylation were significantly increased in the operation group. Static pressure up-regulated the APJ expression, PI3K phosphorylation, Akt phosphorylation, LC3-II/I and beclin-1 expression in cardiomyocytes. APJ shRNA pGPU6/Neo-rat-399, PI3K inhibitor LY294002, Akt inhibitor 1701-1 blocked the up-regulation of APJ, PI3K phosphorylation, Akt phosphorylation, LC3-II/I and beclin-1 expression, respectively. Moreover, static pressure increased the diameter, volume, protein content of cells, and these could be reversed when the cells were treated with pGPU6/Neo-rat-399, LY294002, and autophagy inhibitor 3-methyladenine, respectively. These results suggested that static pressure up-regulates APJ expression to promote cardiomyocyte hypertrophy by a PI3K-autophagy pathway.
    [Abstract] [Full Text] [Related] [New Search]