These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations.
    Author: Stevensson B, Mathew R, Edén M.
    Journal: J Phys Chem B; 2014 Jul 24; 118(29):8863-76. PubMed ID: 24967834.
    Abstract:
    Melt-derived bioactive phosphosilicate glasses are widely utilized as bone-grafting materials for various surgical applications. However, the insight into their structural features over a medium-range scale up to ∼ 1 nm remains limited. We present a comprehensive assessment of the spatial distribution of phosphate groups across the structures of 11 Na2O-CaO-SiO2-P2O5 glasses that encompass both bioactive and nonbioactive compositions, with the P contents and silicate network connectivities varied independently. Both parameters are known to strongly influence the bioactivity of the glass in vitro. The phosphate distribution was investigated by double-quantum (31)P nuclear magnetic resonance (NMR) experiments under magic-angle spinning (MAS) conditions and by molecular dynamics (MD) simulations. The details of the phosphate-ion dispersion were probed by evaluating the MD-derived glass models against various scenarios of randomly distributed, as well as clustered, phosphate groups. From comparisons of the P-P interatomic-distance spreads and the statistics of small phosphate clusters assessed for variable cutoff radii, we conclude that the spatial arrangement of the P atoms in phosphosilicate glasses is well-approximated by a statistical distribution, particularly across a short-range scale of ≤ 450 pm. The primary distinction is reflected in slightly closer P-P interatomic contacts in the MD-derived structures over the distance span of 450-600 pm relative to that of randomly distributed phosphate groups. The nature of the phosphate-ion dispersion remains independent of the silicate network polymerization and nearly independent of the P content of the glass throughout our explored parameter space of 1-6 mol % P2O5 and silicate network connectivities up to 2.9.
    [Abstract] [Full Text] [Related] [New Search]