These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Author: Sun M, Liu XH, Lu KH, Nie FQ, Xia R, Kong R, Yang JS, Xu TP, Liu YW, Zou YF, Lu BB, Yin R, Zhang EB, Xu L, De W, Wang ZX. Journal: Cell Death Dis; 2014 Jun 26; 5(6):e1298. PubMed ID: 24967960. Abstract: Recent evidence indicates that long noncoding RNAs (lncRNAs) have a critical role in the regulation of cellular processes such as differentiation, proliferation, and metastasis. These lncRNAs are dysregulated in a variety of cancers and many function as tumor suppressors; however, the regulatory factors involved in silencing lncRNA transcription are poorly understood. In this study, we showed that epigenetic silencing of lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) occurs in non-small-cell lung cancer (NSCLC) cells through direct transcriptional repression mediated by the Polycomb group protein enhancer of zeste homolog 2 (EZH2). SPRY4-IT1 is derived from an intron within SPRY4, and is upregulated in melanoma cells; knockdown of its expression leads to cell growth arrest, invasion inhibition, and elevated rates of apoptosis. Upon depletion of EZH2 by RNA interference, SPRY4-IT1 expression was restored, and transfection of SPRY4-IT1 into NSCLC cells resulted in a significant antitumoral effect, both in culture and in xenografted nude mice. Moreover, overexpression of SPRY4-IT1 was found to have a key role in the epithelial-mesenchymal transition through the regulation of E-cadherin and vimentin expression. In EZH2-knockdown cells, which characteristically showed impaired cell proliferation and metastasis, the induction of SPRY4-IT1 depletion partially rescued the oncogenic phenotype, suggesting that SPRY4-IT1 repression has an important role in EZH2 oncogenesis. Of most relevance, translation of these findings into human NSCLC tissue samples demonstrated that patients with low levels of SPRY4-IT1 expression had a shorter overall survival time, suggesting that SPRY4-IT1 could be a biomarker for poor prognosis of NSCLC.[Abstract] [Full Text] [Related] [New Search]