These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells.
    Author: Li M, Sun L, Luo Y, Xie C, Pang Y, Li Y.
    Journal: Int J Mol Med; 2014 Sep; 34(3):705-14. PubMed ID: 24970310.
    Abstract:
    Astrocytes are major components of the adult neurogenic niche and play a crucial role in regulating neural stem cell proliferation and differentiation. Following brain injury, astrocytes become reactive and release high-mobility group box 1 (HMGB1), which plays a crucial role in the inflammatory process. However, although it has been reported that HMGB1 promotes neural stem/progenitor cell (NS/PC) proliferation in the developing brain, whether HMGB1 released by reactive astrocytes regulates NS/PC proliferation remains unknown. In this study, we aimed to investigate whether HMGB1 released from reactive astrocytes enhances NS/PC proliferation and to elucidate the possible mechanisms involved in this process. To evaluate the effects of HMGB1 on NS/PC proliferation, NS/PCs were cultured in HMGB1 culture medium and astrocyte-conditioned medium with or without reactive astrocyte-derived HMGB1 by RNA interference (RNAi). To explore the possible mechanisms, the HMGB1 receptor for advanced glycation endproducts (RAGE) in the NS/PCs was blocked with anti-RAGE antibody, and c-Jun N-terminal protein kinase (JNK) in the NS/PCs was inhibited using the potent JNK inhibitor, SP600125. Our results suggested that HMGB1 released from reactive astrocytes promoted NS/PC proliferation in vitro, and the blockade of RAGE or the inhibition of the JNK signaling pathway in the NS/PCs prevented the HMGB1-induced NS/PC proliferation. Our findings demonstrated that HMGB1 released by reactive astrocytes promoted NS/PC proliferation by binding RAGE and enhancing the phosphorylation of the JNK signaling pathway. These findings support a previously described mechanism of a crosstalk between astrocytes and NS/PCs, and suggest that reactive astrocyte-derived HMGB1 plays an important role in the repair of the central nervous system following brain injury.
    [Abstract] [Full Text] [Related] [New Search]