These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the bridged hyponitrite complex {[Fe(OEP)](2)(μ-N(2)O(2))}: reactivity of hyponitrite complexes and biological relevance.
    Author: Berto TC, Xu N, Lee SR, McNeil AJ, Alp EE, Zhao J, Richter-Addo GB, Lehnert N.
    Journal: Inorg Chem; 2014 Jul 07; 53(13):6398-414. PubMed ID: 24971721.
    Abstract:
    The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) represents a paradigm of how NO can be detoxified anaerobically in cells. In order to elucidate the mechanism of this enzyme, model complexes provide a convenient means to assess potential reaction intermediates. In particular, there have been many proposed mechanisms that invoke the formation of a hyponitrite bridge between the heme b3 and nonheme iron (FeB) centers within the NorBC active site. However, the reactivity of bridged iron hyponitrite complexes has not been investigated much in the literature. The model complex {[Fe(OEP)]2(μ-N2O2)} offers a unique opportunity to study the electronic structure and reactivity of such a hyponitrite-bridged complex. Here we report the detailed characterization of {[Fe(OEP)]2(μ-N2O2)} using a combination of IR, nuclear resonance vibrational spectroscopy, electron paramagnetic resonance, and magnetic circular dichroism spectroscopy along with SQUID magnetometry. These results show that the ground-state electronic structure of this complex is best described as having two intermediate-spin (S = (3)/2) iron centers that are weakly antiferromagnetically coupled across the N2O2(2-) bridge. The analogous complex {[Fe(PPDME)]2(μ-N2O2)} shows overall similar properties. Finally, we report the unexpected reaction of {[Fe(OEP)]2(μ-N2O2)} in the presence and absence of 1-methylimidizole to yield [Fe(OEP)(NO)]. Density functional theory calculations are used to rationalize why {[Fe(OEP)]2(μ-N2O2)} cannot be formed directly by dimerization of [Fe(OEP)(NO)] and why only the reverse reaction is observed experimentally. These results thus provide insight into the general reactivity of hyponitrite-bridged iron complexes with general relevance for the N-N bond-forming step in NorBC.
    [Abstract] [Full Text] [Related] [New Search]