These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Celecoxib-induced increase in cytosolic Ca(2+) levels and apoptosis in HA59T human hepatoma cells.
    Author: Cheng HH, Chou CT, Lu YC, Lu T, Chi CC, Tseng LL, Liu SI, Cheng JS, Kuo CC, Liang WZ, Jan CR.
    Journal: Hum Exp Toxicol; 2014 Nov; 33(11):1089-98. PubMed ID: 24972620.
    Abstract:
    Celecoxib has been shown to have antitumor effect in previous studies but the mechanisms are unclear. The effect of celecoxib on cytosolic Ca(2+) concentrations ([Ca(2+)]i) and viability in HA59T human hepatoma cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)]i. Celecoxib at concentrations of 10-50 μM induced a [Ca(2+)]i rise in a concentration-dependent manner. The response was reduced by 80% by removing Ca(2+). Celecoxib induced Mn(2+) influx, leading to quenching of fura-2 fluorescence. Celecoxib-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365, and protein kinase C modulators. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin nearly abolished celecoxib-induced [Ca(2+)]i rise. Incubation with celecoxib abolished thapsigargin-induced [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 abolished celecoxib-induced [Ca(2+)]i rise. At 1-50 μM, celecoxib inhibited cell viability by less than 20%, which was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Celecoxib (10-50 μM) also induced apoptosis. In sum, in HA59T hepatoma cells, celecoxib induced a [Ca(2+)]i rise by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via protein kinase C-sensitive store-operated Ca(2+) channels. Celecoxib also caused cell death via apoptosis.
    [Abstract] [Full Text] [Related] [New Search]