These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The influence of reproductive condition and concurrent environmental factors on torpor and foraging patterns in female big brown bats (Eptesicus fuscus).
    Author: Rintoul JL, Brigham RM.
    Journal: J Comp Physiol B; 2014 Aug; 184(6):777-87. PubMed ID: 24973192.
    Abstract:
    Unlike many other mammals, bats in temperate regions employ short bouts of torpor throughout the reproductive period to maintain a positive energy balance. In addition to decreasing energy expenditure during the day, they typically alter foraging patterns as well. It is well known that various environmental conditions influence both torpor and foraging patterns, but studies of these factors often have focussed on one element in isolation thus it is not known how the two behaviours are collectively influencing temperate bats. The objective of our study was to assess how reproductive condition and environmental factors concurrently affect energy balance in female big brown bats (Eptesicus fuscus). We equipped pregnant and lactating bats in southwest Saskatchewan, Canada with temperature-sensitive radio-transmitters. While transmitters were active, skin temperature data were collected and foraging patterns were determined using triangulation. Of the various environmental and physiological parameters used to model torpor characteristics, roost type was the most important factor. Bats roosting in trees used deeper and longer torpor bouts than those roosting in buildings. Lactating bats had a tendency to forage for longer durations than pregnant bats, and often made more foraging trips. When taken together, we found that foraging duration and torpor duration were not directly related during pregnancy, but exhibited an inverse relationship during lactation. This provides support for the hypothesis that there are physiological trade-offs for reproductive bats and suggests that how bats compensate is not entirely predictable based on current environmental conditions.
    [Abstract] [Full Text] [Related] [New Search]