These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anatomical, molecular and pathological consideration of the circumventricular organs. Author: Szathmari A, Jouvet A, Mottolese C, Champier J, Fèvre Montange M. Journal: Neurochirurgie; 2015; 61(2-3):90-100. PubMed ID: 24974365. Abstract: BACKGROUND AND PURPOSE: Circumventricular organs (CVOs) are a diverse group of specialised structures characterized by peculiar vascular and position around the third and fourth ventricles of the brain. In humans, these organs are present during the fetal period and some become vestigial after birth. Some, such as the pineal gland (PG), subcommissural organ (SCO) and organum vasculosum of the lamina terminalis (OVLT), which are located around the third ventricle, might be the site of origin of periventricular tumours. In contrast to humans, CVOs are present in the adult rat and can be dissected by laser capture microdissection (LCM). METHODS: In this study, we used LCM and microarrays to analyse the transcriptomes of three CVOs, the SCO, the subfornical organ (SFO) and the PG and the third ventricle ependyma of the adult rat, in order to better characterise these organs at the molecular level. Furthermore, an immunohistochemical study of Claudin-3 (CLDN3), a membrane protein involved in forming cellular tight junctions, was performed at the level of the SCO. RESULTS: This study highlighted some potentially new or already described specific markers of these structures as Erbb2 and Col11a1 in ependyma, Epcam and CLDN3 in the SCO, Ren1 and Slc22a3 in the SFO and Tph, Anat and Asmt in the PG. Moreover, we found that CLDN3 expression was restricted to the apical pole of ependymocytes in the SCO.[Abstract] [Full Text] [Related] [New Search]