These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced performance and stability of polymer BHJ photovoltaic devices from dry transfer of PEDOT:PSS. Author: Kim JK, Park I, Kim W, Wang DH, Choi DG, Choi YS, Park JH. Journal: ChemSusChem; 2014 Jul; 7(7):1957-63. PubMed ID: 24989323. Abstract: Polymer solar cells with enhanced initial cell performances and long-term stability were fabricated by performing a simple dry transfer of a hole extraction layer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)] onto an indium tin oxide (ITO) substrate. Due to the very flat surface of the polyurethane acrylate/polycarbonate (PUA/PC) film, which was used as a mold and resembled the surface of the original substrate (silicon wafer), the transferred layer had a very smooth surface morphology, resulting in enhancement of the interfacial characteristics. The work function of the PEDOT:PSS layer and the morphology of bulk hetero junction (BHJ) layer were tuned by controlling the position of PSS enrichment in the PEDOT:PSS layer using the dry transfer. The power conversion efficiency of PTB7:PC71 BM BHJ device prepared by the dry transfer was 8.06%, which was significantly higher than that of the spin-cast device (7.32%). By avoiding direct contact between the ITO substrate and the PEDOT:PSS solution in the dry transfer system, etching and diffusion of indium in the ITO substrate were greatly reduced, thereby improving the stability.[Abstract] [Full Text] [Related] [New Search]