These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4'-dichlorobiphenyl. Author: Adriaens P, Kohler HP, Kohler-Staub D, Focht DD. Journal: Appl Environ Microbiol; 1989 Apr; 55(4):887-92. PubMed ID: 2499257. Abstract: Acinetobacter sp. strain 4CB1 was isolated from a polychlorobiphenyl-contaminated soil sample by using 4-chlorobenzoate as a sole source of carbon and energy. Resting cells of Acinetobacter sp. strain 4CB1 hydrolytically dehalogenated 4-chlorobenzoate under aerobic and anaerobic conditions, but 4-hydroxybenzoate accumulated only under anaerobic conditions. Cell extracts of Acinetobacter sp. strain 4CB1 oxidized 4-hydroxybenzoate by an NADH-dependent monooxygenase to form protocatechuate, which was subsequently oxidized by both ortho- and meta-protocatechuate dioxygenase reactions. When grown on biphenyl, Acinetobacter sp. strain P6 cometabolized 4,4'-dichlorobiphenyl primarily to 4-chlorobenzoate; however, when this strain was grown in a coculture with Acinetobacter sp. strain 4CB1, 4-chlorobenzoate did not accumulate but was converted to inorganic chloride. When resting cells of Acinetobacter sp. strain 4CB1 were incubated anaerobically with 3,4-dichlorobenzoate, they accumulated 4-carboxy-1,2-benzoquinone as a final product. Since 3,4-dichlorobenzoate is a product that is formed from the cometabolism of 3,4-dichloro-substituted tetrachlorobiphenyls by Acinetobacter sp. strain P6, the coculture has a potential application for dehalogenation and mineralization of specific polychlorobiphenyl congeners.[Abstract] [Full Text] [Related] [New Search]